bosk.block.zoo.models.classification.ferns
#
Module Contents#
Classes#
Random Ferns Classifier Block. |
- class bosk.block.zoo.models.classification.ferns.RandomFernsBlock(n_groups=10, n_ferns_in_group=20, fern_size=7, kind='unary', bootstrap=False, n_jobs=None, random_state=None)#
Bases:
bosk.block.base.BaseBlock
Random Ferns Classifier Block.
- Parameters:
n_groups (int) – Number of ferns groups (like a number of estimators).
n_ferns_in_group (int) – Number of ferns in a group.
fern_size (int) – Number of tests in fern.
kind (str) – Kind of tests (‘unary’ or ‘binary’).
bootstrap (bool) – Apply data bootstrap or not.
n_jobs (Optional[int]) – Number of threads.
random_state (Optional[int]) – Random state.
Input slots#
Fit inputs#
X: Input features.
y: Ground truth labels.
Transform inputs#
X: Input features.
Output slots#
probas: Predicted probabilities.
- meta#
- __getstate__()#
- Return type:
dict
- __setstate__(state)#
- Parameters:
state (dict) –
- _classifier_init(y)#
- _parallel_calc_bucket_stats(bucket_indices, y, group_data_indices)#
- _make_ferns(X, prng_key)#
- _apply_ferns(X, ferns)#
- fit(inputs)#
Fit the Random Ferns Block. The implementation is device-agnostic.
- Parameters:
inputs (bosk.block.base.BlockInputData) –
- Return type:
- _predict_proba(X)#
- transform(inputs)#
Transform the given input data, i.e. compute values for each output slot.
- Parameters:
inputs (bosk.block.base.BlockInputData) – Block input data for the transforming stage.
- Returns:
Outputs calculated for the given inputs.
- Return type:
bosk.block.base.TransformOutputData